Solution of a non-expensive least-square problem based on a scipy implementation
- Driver:
- Download script:
The target of the study is to showcase the solution of a non-linear least-squares problem from the NIST statistical reference datasets. As an example, the MGH17 problem is considered which consists of fitting a vectorial model \(\mathbf{f}(\mathbf{b}) \in \mathbb{R}^{33}\) with
\[f_i(\mathbf{b}) = b_1 + b_2 \exp(-i \cdot b_4) + b_3 \exp(-i \cdot b_5),\, i = 0, \dots, 32\]
to a target vector with 33 entries. The certified best-fit values are
\[ \begin{align}\begin{aligned}b_1 &= 0.3754100521 \pm 2.0723153551 \cdot 10^{-3}&\\b_2 &= 1.9358469127 \pm 0.22031669222&\\b_3 &= -1.464687136 \pm 0.22175707739&\\b_4 &= 0.1286753464 \pm 4.4861358114\cdot 10^{-3}&\\b_5 &= 0.2212269966 \pm 8.9471996575 \cdot 10^{-3}&\end{aligned}\end{align} \]
1import sys,os
2import numpy as np
3import time
4import pandas as pd
5import torch
6
7from jcmoptimizer import Client, Study, Obseravtion
8client = Client()
9
10
11# Definition of the search domain
12design_space = [
13 {'name': 'b1', 'type': 'continuous', 'domain': (0,10)},
14 {'name': 'b2', 'type': 'continuous', 'domain': (0.1,4)},
15 {'name': 'b3', 'type': 'continuous', 'domain': (-4,-0.1)},
16 {'name': 'b4', 'type': 'continuous', 'domain': (0.05,1)},
17 {'name': 'b5', 'type': 'continuous', 'domain': (0.05,1)}
18]
19constraints = [
20 {'name': 'test', 'expression': 'b2 + b3 <= 1.0'}
21]
22
23# Creation of the study object with study_id 'scipy_least_squares'
24study = client.create_study(
25 design_space=design_space,
26 constraints=constraints,
27 driver="ScipyLeastSquares",
28 study_name="Solution of a non-expensive least-square problem based on a scipy implementation",
29 study_id="scipy_least_squares"
30)
31#The vectorial model function of the MGH17 problem
32def model(x: torch.Tensor) -> torch.Tensor:
33 s = torch.arange(33)
34 return x[0] + x[1]*torch.exp(-s*x[3]) + x[2]*torch.exp(-s*x[4])
35
36#Target vector of the MGH17
37target=torch.tensor([
38 8.44E-01, 9.08E-01, 9.32E-01, 9.36E-01, 9.25E-01,
39 9.08E-01, 8.81E-01, 8.50E-01, 8.18E-01, 7.84E-01,
40 7.51E-01, 7.18E-01, 6.85E-01, 6.58E-01, 6.28E-01,
41 6.03E-01, 5.80E-01, 5.58E-01, 5.38E-01, 5.22E-01,
42 5.06E-01, 4.90E-01, 4.78E-01, 4.67E-01, 4.57E-01,
43 4.48E-01, 4.38E-01, 4.31E-01, 4.24E-01, 4.20E-01,
44 4.14E-01, 4.11E-01, 4.06E-01
45])
46
47study.configure(
48 target_vector=target.tolist(),
49 method="trf",
50 max_iter=150,
51 num_parallel=2,
52 num_initial=2,
53 jac=True
54)
55
56# Evaluation of the black-box function for specified design parameters
57def evaluate(study: Study, b1: float, b2: float, b3: float, b4: float, b5: float) -> Observation:
58
59 observation = study.new_observation()
60 #tensor of design values to reconstruct
61 x = torch.tensor([b1, b2, b3, b4, b5], requires_grad=True)
62
63 observation.add(model(x).tolist())
64
65 #determine Jacobian matrix
66 jac = torch.autograd.functional.jacobian(
67 func=model,
68 inputs=x
69 )
70
71 for idx, param in enumerate(design_space):
72 observation.add(jac[:, idx].tolist(), derivative=param["name"])
73 return observation
74
75# Run the minimization
76study.set_evaluator(evaluate)
77study.run()
78best_sample = study.driver.best_sample
79uncertainties = study.driver.uncertainties
80print("Reconstructed parameters:")
81for param in design_space:
82 name = param['name']
83 print(f" {name} = {best_sample[name]:.3f} +/- {uncertainties[name]:.3f}")
84
85
86client.shutdown_server()