Solution of a non-expensive least-square problem based on a scipy implementation

Driver:

ScipyLeastSquares

Download script: scipy_least_squares.m

The target of the study is to showcase the solution of a non-linear least-squares problem from the NIST statistical reference datasets. As an example, the MGH17 problem is considered which consists of fitting a vectorial model \(\mathbf{f}(\mathbf{b}) \in \mathbb{R}^{33}\) with

\[f_i(\mathbf{b}) = b_1 + b_2 \exp(-i \cdot b_4) + b_3 \exp(-i \cdot b_5),\, i = 0, \dots, 32\]

to a target vector with 33 entries. The certified best-fit values are

\[ \begin{align}\begin{aligned}b_1 &= 0.3754100521 \pm 2.0723153551 \cdot 10^{-3}&\\b_2 &= 1.9358469127 \pm 0.22031669222&\\b_3 &= -1.464687136 \pm 0.22175707739&\\b_4 &= 0.1286753464 \pm 4.4861358114\cdot 10^{-3}&\\b_5 &= 0.2212269966 \pm 8.9471996575 \cdot 10^{-3}&\end{aligned}\end{align} \]
 1client = jcmoptimizer.Client(); 
 2
 3 % Definition of the search domain
 4design_space = { ...
 5  struct('name', 'b1', 'type', 'continuous', 'domain', [0,10]), ... 
 6  struct('name', 'b2', 'type', 'continuous', 'domain', [0.1,4]), ...
 7  struct('name', 'b3', 'type', 'continuous', 'domain', [-4,-0.1]), ...
 8  struct('name', 'b4', 'type', 'continuous', 'domain', [0.05,1]), ...
 9  struct('name', 'b5', 'type', 'continuous', 'domain', [0.05,1]) ...
10};
11constraints = { ...
12    struct('name', 'test', 'expression', 'b2 + b3 <= 1.0') ...
13};
14
15 % Creation of the study object with study_id 'scipy_least_squares'
16study = client.create_study( ...
17    'design_space', design_space, ...
18    'constraints', constraints,...
19    'driver','ScipyLeastSquares',...
20    'study_name','Solution of a non-expensive least-square problem based on a scipy implementation',...
21    'study_id', 'scipy_least_squares');
22%The vectorial model function of the MGH17 problem
23function val = model(x)
24    s = 0:32;
25    val = x(1) + x(2)*exp(-s.*x(4)) + x(3)*exp(-s.*x(5));
26end
27
28%Target vector of the MGH17
29target=[8.44E-01, 9.08E-01, 9.32E-01, 9.36E-01, 9.25E-01, ...
30 9.08E-01, 8.81E-01, 8.50E-01, 8.18E-01, 7.84E-01, ...
31 7.51E-01, 7.18E-01, 6.85E-01, 6.58E-01, 6.28E-01, ...
32 6.03E-01, 5.80E-01, 5.58E-01, 5.38E-01, 5.22E-01, ...
33 5.06E-01, 4.90E-01, 4.78E-01, 4.67E-01, 4.57E-01, ...
34 4.48E-01, 4.38E-01, 4.31E-01, 4.24E-01, 4.20E-01, ...
35 4.14E-01, 4.11E-01, 4.06E-01];
36
37study.configure( ...
38    'target_vector', target, ...
39    'max_iter', 300, ...
40    'num_initial', 1, ...
41    'method', 'trf' ...
42);
43
44% Evaluation of the black-box function for specified design parameters
45function observation = evaluate(study, sample)
46
47    observation = study.new_observation();
48     %tensor of design values to reconstruct
49    x = [sample.b1, sample.b2, sample.b3, sample.b4, sample.b5];    
50    observation.add(model(x));
51    
52end  
53
54% Run the minimization
55study.set_evaluator(@evaluate);
56study.run(); 
57
58best_sample = study.driver.best_sample;
59min_chisq = study.driver.min_objective;
60uncertainties = study.driver.uncertainties;
61fprintf("Reconstructed parameters with chi-squared value %e\n", min_chisq);
62fns = fieldnames(best_sample);
63for i = 1:length(fns)
64    fprintf("  %s = %f +/- %f\n", fns{i}, ...
65            best_sample.(fns{i}), uncertainties.(fns{i})); 
66end
67
68
69client.shutdown_server();