Solution of least-square problem using Bayesian optimization
- Driver:
- Download script:
The target of the study is to showcase the solution of a non-linear least-squares problem from the NIST statistical reference datasets. As an example, the MGH17 problem is considered which consists of fitting a vectorial model \(\mathbf{f}(\mathbf{b}) \in \mathbb{R}^{33}\) with
\[f_i(\mathbf{b}) = b_1 + b_2 \exp(-i \cdot b_4) + b_3 \exp(-i \cdot b_5),\, i = 0, \dots, 32\]
to a target vector with 33 entries. The certified best-fit values are
\[ \begin{align}\begin{aligned}b_1 &= 0.3754100521 \pm 2.0723153551 \cdot 10^{-3}&\\b_2 &= 1.9358469127 \pm 0.22031669222&\\b_3 &= -1.464687136 \pm 0.22175707739&\\b_4 &= 0.1286753464 \pm 4.4861358114\cdot 10^{-3}&\\b_5 &= 0.2212269966 \pm 8.9471996575 \cdot 10^{-3}&\end{aligned}\end{align} \]
1import sys,os
2import numpy as np
3import time
4import pandas as pd
5import torch
6import matplotlib.pyplot as plt
7import corner #run "pip install corner" if not installed
8import emcee #run "pip install emcee" if not installed
9
10
11from jcmoptimizer import Client, Study, Obseravtion
12client = Client()
13
14
15# Definition of the search domain
16design_space = [
17 {'name': 'b1', 'type': 'continuous', 'domain': (0,10)},
18 {'name': 'b2', 'type': 'continuous', 'domain': (0.1,4)},
19 {'name': 'b3', 'type': 'continuous', 'domain': (-4,-0.1)},
20 {'name': 'b4', 'type': 'continuous', 'domain': (0.05,1)},
21 {'name': 'b5', 'type': 'continuous', 'domain': (0.05,1)}
22]
23constraints = [
24 {'name': 'test', 'expression': 'b2 + b3 <= 1.0'}
25]
26
27# Creation of the study object with study_id 'bayesian_least_squares'
28study = client.create_study(
29 design_space=design_space,
30 constraints=constraints,
31 driver="BayesianLeastSquares",
32 study_name="Solution of least-square problem using Bayesian optimization",
33 study_id="bayesian_least_squares"
34)
35#The vectorial model function of the MGH17 problem
36def model(x: torch.Tensor) -> torch.Tensor:
37 s = torch.arange(33)
38 return x[0] + x[1]*torch.exp(-s*x[3]) + x[2]*torch.exp(-s*x[4])
39
40#Target vector of the MGH17
41target=torch.tensor([
42 8.44E-01, 9.08E-01, 9.32E-01, 9.36E-01, 9.25E-01,
43 9.08E-01, 8.81E-01, 8.50E-01, 8.18E-01, 7.84E-01,
44 7.51E-01, 7.18E-01, 6.85E-01, 6.58E-01, 6.28E-01,
45 6.03E-01, 5.80E-01, 5.58E-01, 5.38E-01, 5.22E-01,
46 5.06E-01, 4.90E-01, 4.78E-01, 4.67E-01, 4.57E-01,
47 4.48E-01, 4.38E-01, 4.31E-01, 4.24E-01, 4.20E-01,
48 4.14E-01, 4.11E-01, 4.06E-01
49])
50
51study.configure(
52 target_vector=target.tolist(),
53 max_iter=120,
54)
55# Evaluation of the black-box function for specified design parameters
56def evaluate(study: Study, b1: float, b2: float, b3: float, b4: float, b5: float) -> Observation:
57
58 observation = study.new_observation()
59 #tensor of design values to reconstruct
60 x = torch.tensor([b1, b2, b3, b4, b5])
61 observation.add(model(x).tolist())
62
63 return observation
64
65# Run the minimization
66study.set_evaluator(evaluate)
67study.run()
68best_sample = study.driver.best_sample
69min_chisq = study.driver.min_objective
70uncertainties = study.driver.uncertainties
71print(f"Reconstructed parameters with chi-squared value {min_chisq:.4e}:")
72for param in design_space:
73 name = param['name']
74 print(f" {name} = {best_sample[name]:.3f} +/- {uncertainties[name]:.3f}")
75
76# Before running a Markov-chain Monte-Carlo (MCMC) sampling we converge the surrogate
77# models by sampling around the minimum. To make the study more explorative, the
78# scaling parameter is increased and the effective degrees of freedom is set to one.
79study.configure(
80 scaling=10.0,
81 effective_DOF=1.0,
82 min_uncertainty=min_chisq*1e-8,
83 max_iter=150,
84 min_val=0.0
85)
86study.run()
87
88# Run the MCMC sampling with 32 walkers
89num_walkers, max_iter = 32, 10000
90mcmc_result = study.driver.run_mcmc(
91 rel_error=0.01,
92 num_walkers=num_walkers,
93 max_iter=max_iter
94)
95minimum = torch.tensor([3.7541005211E-01, 1.9358469127E+00, -1.4646871366E+00,
96 1.2867534640E-01,2.2122699662E-01])
97fig = corner.corner(
98 np.array(mcmc_result['samples']),
99 quantiles=(0.16, 0.5, 0.84),
100 levels=(1-np.exp(-1.0), 1-np.exp(-0.5)),
101 show_titles=True, scale_hist=False,
102 title_fmt=".3f",
103 labels=[d['name'] for d in design_space],
104 truths=minimum.numpy()
105)
106plt.savefig("corner_surrogate.svg", transparent=True)
107
108# As a comparison, we run the MCMC sampling directly on the analytic model.
109p0 = 0.05*np.random.randn(num_walkers, len(design_space))
110p0 += minimum.numpy()
111min_chisq_cert = 5.4648946975E-05 #certified minimum of MGH17 problem
112#reduced standard error sqrt(chisq/DOF) to scale measurement uncertainties
113RSE = np.sqrt(min_chisq_cert/(len(target)-len(design_space)))
114
115#log probability function
116def log_prob(x):
117 out = -0.5*np.sum(((model(torch.tensor(x))-target)/RSE).numpy()**2)
118 if np.isnan(out): return -np.inf
119 return out
120
121sampler = emcee.EnsembleSampler(
122 nwalkers=num_walkers, ndim=len(design_space), log_prob_fn=log_prob
123)
124
125#burn-in phase
126state = sampler.run_mcmc(p0, 100)
127sampler.reset()
128#actual MCMC sampling
129sampler.run_mcmc(state, max_iter, progress=True)
130samples = sampler.get_chain(flat=True)
131fig = corner.corner(
132 samples, quantiles=(0.16, 0.5, 0.84),
133 levels=(1-np.exp(-1.0), 1-np.exp(-0.5)),
134 show_titles=True, scale_hist=False,
135 title_fmt=".3f",
136 labels=[d['name'] for d in design_space],
137 truths=minimum.numpy()
138)
139plt.savefig("corner_analytic.svg", transparent=True)
140
141
142client.shutdown_server()
Markov-Chain Monte-Carlo (MCMC) sampling of the probability density of the parameters \(b_1,\dots,b_5\) based on the analytic model function.
Markov-Chain Monte-Carlo (MCMC) sampling of the probability density of the parameters \(b_1,\dots,b_5\) based on the trained surrogate of the study. A comparison between the analytic and the surrogate model function shows a good quantitative agreement.