Solution of least-square problem using Bayesian optimization
- Driver:
- Download script:
The target of the study is to showcase the solution of a non-linear least-squares problem from the NIST statistical reference datasets. As an example, the MGH17 problem is considered which consists of fitting a vectorial model \(\mathbf{f}(\mathbf{b}) \in \mathbb{R}^{33}\) with
\[f_i(\mathbf{b}) = b_1 + b_2 \exp(-i \cdot b_4) + b_3 \exp(-i \cdot b_5),\, i = 0, \dots, 32\]
to a target vector with 33 entries. The certified best-fit values are
\[ \begin{align}\begin{aligned}b_1 &= 0.3754100521 \pm 2.0723153551 \cdot 10^{-3}&\\b_2 &= 1.9358469127 \pm 0.22031669222&\\b_3 &= -1.464687136 \pm 0.22175707739&\\b_4 &= 0.1286753464 \pm 4.4861358114\cdot 10^{-3}&\\b_5 &= 0.2212269966 \pm 8.9471996575 \cdot 10^{-3}&\end{aligned}\end{align} \]
1import sys,os
2import numpy as np
3import time
4import pandas as pd
5import torch
6import matplotlib.pyplot as plt
7import corner #run "pip install corner" if not installed
8import emcee #run "pip install emcee" if not installed
9
10
11jcm_optimizer_path = r"<JCM_OPTIMIZER_PATH>"
12sys.path.insert(0, os.path.join(jcm_optimizer_path, "interface", "python"))
13from jcmoptimizer import Server, Client, Study, Observation
14server = Server()
15client = Client(server.host)
16
17# Definition of the search domain
18design_space = [
19 {'name': 'b1', 'type': 'continuous', 'domain': (0,10)},
20 {'name': 'b2', 'type': 'continuous', 'domain': (0.1,4)},
21 {'name': 'b3', 'type': 'continuous', 'domain': (-4,-0.1)},
22 {'name': 'b4', 'type': 'continuous', 'domain': (0.05,1)},
23 {'name': 'b5', 'type': 'continuous', 'domain': (0.05,1)}
24]
25constraints = [
26 {'name': 'test', 'expression': 'b2 + b3 <= 1.0'}
27]
28
29# Creation of the study object with study_id 'bayesian_least_squares'
30study = client.create_study(
31 design_space=design_space,
32 constraints=constraints,
33 driver="BayesianLeastSquares",
34 name="Solution of least-square problem using Bayesian optimization",
35 study_id="bayesian_least_squares"
36)
37#The vectorial model function of the MGH17 problem
38def model(x: torch.Tensor) -> torch.Tensor:
39 s = torch.arange(33)
40 return x[0] + x[1]*torch.exp(-s*x[3]) + x[2]*torch.exp(-s*x[4])
41
42#Target vector of the MGH17
43target=torch.tensor([
44 8.44E-01, 9.08E-01, 9.32E-01, 9.36E-01, 9.25E-01,
45 9.08E-01, 8.81E-01, 8.50E-01, 8.18E-01, 7.84E-01,
46 7.51E-01, 7.18E-01, 6.85E-01, 6.58E-01, 6.28E-01,
47 6.03E-01, 5.80E-01, 5.58E-01, 5.38E-01, 5.22E-01,
48 5.06E-01, 4.90E-01, 4.78E-01, 4.67E-01, 4.57E-01,
49 4.48E-01, 4.38E-01, 4.31E-01, 4.24E-01, 4.20E-01,
50 4.14E-01, 4.11E-01, 4.06E-01
51])
52
53study.configure(
54 target_vector=target.tolist(),
55 max_iter=120,
56)
57# Evaluation of the black-box function for specified design parameters
58def evaluate(study: Study, b1: float, b2: float, b3: float, b4: float, b5: float) -> Observation:
59
60 observation = study.new_observation()
61 #tensor of design values to reconstruct
62 x = torch.tensor([b1, b2, b3, b4, b5])
63 observation.add(model(x).tolist())
64
65 return observation
66
67# Run the minimization
68study.set_evaluator(evaluate)
69study.run()
70best_sample = study.driver.best_sample
71min_chisq = study.driver.min_objective
72uncertainties = study.driver.uncertainties
73print(f"Reconstructed parameters with chi-squared value {min_chisq:.4e}:")
74for param in design_space:
75 name = param['name']
76 print(f" {name} = {best_sample[name]:.3f} +/- {uncertainties[name]:.3f}")
77
78# Before running a Markov-chain Monte-Carlo (MCMC) sampling we converge the surrogate
79# models by sampling around the minimum. To make the study more explorative, the
80# scaling parameter is increased and the effective degrees of freedom is set to one.
81study.configure(
82 scaling=10.0,
83 effective_DOF=1.0,
84 min_uncertainty=min_chisq*1e-8,
85 max_iter=150,
86 min_val=0.0
87)
88study.run()
89
90# Run the MCMC sampling with 32 walkers
91num_walkers, max_iter = 32, 10000
92mcmc_result = study.driver.run_mcmc(
93 rel_error=0.01,
94 num_walkers=num_walkers,
95 max_iter=max_iter
96)
97minimum = torch.tensor([3.7541005211E-01, 1.9358469127E+00, -1.4646871366E+00,
98 1.2867534640E-01,2.2122699662E-01])
99fig = corner.corner(
100 np.array(mcmc_result['samples']),
101 quantiles=(0.16, 0.5, 0.84),
102 levels=(1-np.exp(-1.0), 1-np.exp(-0.5)),
103 show_titles=True, scale_hist=False,
104 title_fmt=".3f",
105 labels=[d['name'] for d in design_space],
106 truths=minimum.numpy()
107)
108plt.savefig("corner_surrogate.svg", transparent=True)
109
110# As a comparison, we run the MCMC sampling directly on the analytic model.
111p0 = 0.05*np.random.randn(num_walkers, len(design_space))
112p0 += minimum.numpy()
113min_chisq_cert = 5.4648946975E-05 #certified minimum of MGH17 problem
114#reduced standard error sqrt(chisq/DOF) to scale measurement uncertainties
115RSE = np.sqrt(min_chisq_cert/(len(target)-len(design_space)))
116
117#log probability function
118def log_prob(x):
119 out = -0.5*np.sum(((model(torch.tensor(x))-target)/RSE).numpy()**2)
120 if np.isnan(out): return -np.inf
121 return out
122
123sampler = emcee.EnsembleSampler(
124 nwalkers=num_walkers, ndim=len(design_space), log_prob_fn=log_prob
125)
126
127#burn-in phase
128state = sampler.run_mcmc(p0, 100)
129sampler.reset()
130#actual MCMC sampling
131sampler.run_mcmc(state, max_iter, progress=True)
132samples = sampler.get_chain(flat=True)
133fig = corner.corner(
134 samples, quantiles=(0.16, 0.5, 0.84),
135 levels=(1-np.exp(-1.0), 1-np.exp(-0.5)),
136 show_titles=True, scale_hist=False,
137 title_fmt=".3f",
138 labels=[d['name'] for d in design_space],
139 truths=minimum.numpy()
140)
141plt.savefig("corner_analytic.svg", transparent=True)
142
Markov-Chain Monte-Carlo (MCMC) sampling of the probability density of the parameters \(b_1,\dots,b_5\) based on the analytic model function.
Markov-Chain Monte-Carlo (MCMC) sampling of the probability density of the parameters \(b_1,\dots,b_5\) based on the trained surrogate of the study. A comparison between the analytic and the surrogate model function shows a good quantitative agreement.