Standard Bayesian optimization

Driver:

BayesianOptimization

Download script:

vanilla_bayesian_optimization.py

The target of the study is to run a standard Bayesian optimization of a scalar function. As an example, the 2D Rastrigin function on a circular domain is minimized,

\[ \begin{align}\begin{aligned}&\text{min.}\,& f(x_1,x_2) = 2\cdot10 + \sum_{i=1,2} \left(x_i^2 - 10\cos(2\pi x_i)\right)\\&\text{s.t.}\,& \sqrt{x_1^2 + x_2^2} \leq 1.5.\end{aligned}\end{align} \]
 1import sys,os
 2import numpy as np
 3import time
 4import pandas as pd
 5
 6from jcmoptimizer import Server, Client, Study, Obseravtion
 7server = Server()
 8client = Client(host=server.host)
 9
10
11# Definition of the search domain
12design_space = [
13    {'name': 'x1', 'type': 'continuous', 'domain': (-1.5,1.5)}, 
14    {'name': 'x2', 'type': 'continuous', 'domain': (-1.5,1.5)},
15]
16
17# Definition of fixed environment parameter
18environment = [
19    {'name': 'radius', 'type': 'fixed', 'domain': 1.5},
20]
21
22# Definition of a constraint on the search domain
23constraints = [
24    {'name': 'circle', 'expression': 'sqrt(x1^2 + x2^2) <= radius'}
25]
26
27# Creation of the study object with study_id 'vanilla_bayesian_optimization'
28study = client.create_study(
29    design_space=design_space,
30    environment=environment,
31    constraints=constraints,
32    driver="BayesianOptimization",
33    study_name="Standard Bayesian optimization",
34    study_id="vanilla_bayesian_optimization"
35)
36
37# Evaluation of the black-box function for specified design parameters
38def evaluate(study: Study, x1: float, x2: float, radius: float) -> Observation:
39
40    time.sleep(2) # make objective expensive
41    observation = study.new_observation()
42    observation.add(10*2
43                + (x1**2-10*np.cos(2*np.pi*x1)) 
44                + (x2**2-10*np.cos(2*np.pi*x2))
45            )
46    return observation
47
48# Run the minimization
49study.set_evaluator(evaluate)
50study.run()
51
52best = study.driver.best_sample
53print(f"Best sample at: x1={best['x1']:.3f}, x2={best['x2']:.3f}")
54#print information on all found local minima
55minima = study.driver.get_minima(num_initial_samples=20)
56print(pd.DataFrame(minima))
57
58#get information on best value under uncertain inputs with standard deviation 0.1
59study.configure(parameter_distribution=dict(
60    distributions =[
61        dict(type="normal", parameter="x1", mean=best["x1"], stddev=0.01),
62        dict(type="normal", parameter="x2", mean=best["x2"], stddev=0.02)
63    ]
64))
65stats = study.driver.get_statistics(quantiles=[0.5])
66print(f"Objective mean {stats['mean'][0]:.2f}, "
67      f"standard deviation {np.sqrt(stats['variance'][0]):.2f}, "
68      f"median {stats['quantiles'][0][0]:.2f}")