Bayesian parameter reconstruction using Bayesian optimization
- Driver:
Download script: bayesian_reconstruction.m
The target of the study is to showcase the solution of a Bayesian parameter reconstruction problembased on a set ot measurements \(\mathbf{t} \in \mathbb{R}^K\).
We assume that the measurement process can be accurately modeled by a function \(\mathbf{f}(\mathbf{b}) \in \mathbb{R}^K\). As an example we consider the MGH17 problem which consists of fitting a vectorial model \(\mathbf{f}(\mathbf{b}) \in \mathbb{R}^{33}\) with
to a measurement vector with \(K = 33\) entries.
Due to random measurement noise \(\mathbf{w} \sim \mathcal{N}(0, {\rm diag}{[\eta_1^2,...,\eta_K^2]})\), the vector of measurements \(\mathbf{t} = \mathbf{f}(\mathbf{b}) + \mathbf{w}\) is a random vector with probability density
The noise variances \(\eta_i^2\) shall be unknown and estimated from the measurement data. To this end we assume that the variance is composed of a background term \(c_1^2\) and a noise contribution which scales linearly with \(f_i(\mathbf{b})\), i.e.
Taking non-uniform prior distributions for the design parameter vector \(P_\text{prior}(\mathbf{b})\) and the error model parameters \(P_\text{prior}(\mathbf{c})\) into account the posterior distribution is then proportional to \(P(\mathbf{b}, \mathbf{c} | \mathbf{t}) \propto P(\mathbf{t} | \mathbf{b}, \mathbf{c}) P_\text{prior}(\mathbf{b}) P_\text{prior}(\mathbf{c})\).
Alltogether, the target of finding the parameters with maximum posterior probability density is equivalent of minimizing the value of the negative log-probability
In the following, we show how this negative log-probability can be minimized using the BayesianReconstruction driver. We compare the results of the dirver’s MCMC sampling of the posterior probability to an MCMC sampling of the analytic value.
1jcm_optimizer_path = '<JCM_OPTIMIZER_PATH>';
2addpath(fullfile(jcm_optimizer_path, 'interface', 'matlab'));
3
4server = jcmoptimizer.Server();
5client = jcmoptimizer.Client(server.port);
6
7% Definition of the search domain
8design_space = { ...
9 struct('name', 'b1', 'type', 'continuous', 'domain', [0,10]), ...
10 struct('name', 'b2', 'type', 'continuous', 'domain', [0.1,4]), ...
11 struct('name', 'b3', 'type', 'continuous', 'domain', [-4,-0.1]), ...
12 struct('name', 'b4', 'type', 'continuous', 'domain', [0.05,1]), ...
13 struct('name', 'b5', 'type', 'continuous', 'domain', [0.05,1]) ...
14};
15
16 % Creation of the study object with study_id 'bayesian_reconstruction'
17study = client.create_study( ...
18 'design_space', design_space, ...
19 'driver','BayesianReconstruction',...
20 'name','Bayesian parameter reconstruction using Bayesian optimization',...
21 'study_id', 'bayesian_reconstruction');
22%The vectorial model function of the MGH17 problem
23function val = model(x)
24 s = 0:32;
25 val = x(1) + x(2)*exp(-s.*x(4)) + x(3)*exp(-s.*x(5));
26end
27
28%The forward model parameters b to be reconstructed
29b_true = [3.7541005211E-01, 1.9358469127E+00, -1.4646871366E+00, ...
30 1.2867534640E-01,2.2122699662E-01];
31
32%The error model parameters in log-space to be reconstructed
33log_c1 = log(0.005);
34log_c2 = log(0.01);
35
36%The error model, i.e. the noise stddev depending on the model value y=f(b)
37function stddev = error_model(log_c1, log_c2, y)
38 stddev = sqrt( exp(log_c1)^2 + (exp(log_c2).*y).^2);
39end
40
41%Generate a rantom target vector of measurements
42rng("default");
43model_vector = model(b_true);
44err = error_model(log_c1,log_c2,model_vector);
45measurement_vector = model_vector + err.*randn(size(model_vector));
46
47%Configuration of the error model
48err_model_conf = struct();
49%error model expression
50err_model_conf.expression = 'sqrt(exp(log_c1)^2 + (exp(log_c2)*y_model)^2)';
51%distribution of error model parameters
52err_model_conf.distributions = { ...
53 struct('type', 'normal', 'parameter', 'log_c1', 'mean', -5.0, 'stddev', 1), ...
54 struct('type', 'normal', 'parameter', 'log_c2', 'mean', -4.0, 'stddev', 1), ...
55};
56%initial values and parameter bounds for fitting the error model parameters
57err_model_conf.initial_parameters = [-5.0, -4.0];
58err_model_conf.parameter_bounds = [-7,-2; -6.0,-1];
59
60%Multivariate normal prior distribution of forward model parameters.
61%Unspecified parameters (b1,b4,b5) are uniformly distributed in the design space
62distribution = struct();
63distribution.type='mvn';
64distribution.parameters = {'b2','b3'};
65distribution.mean = [2.25,-2.0];
66distribution.covariance = [0.5,-0.01;-0.01,0.5];
67parameter_distribution = struct();
68parameter_distribution.distributions = {distribution};
69
70study.configure( ...
71 'max_iter', 80, ...
72 'target_vector', measurement_vector, ...
73 'error_model', err_model_conf, ...
74 'parameter_distribution', parameter_distribution ...
75);
76% Evaluation of the black-box function for specified design parameters
77function observation = evaluate(study, sample)
78
79 observation = study.new_observation();
80 %array of design values
81 x = [sample.b1, sample.b2, sample.b3, sample.b4, sample.b5];
82 observation.add(model(x));
83
84end
85
86% Run the minimization
87study.set_evaluator(@evaluate);
88study.run();
89
90best_b_sample = study.driver.best_sample;
91min_neg_log_prob = study.driver.min_objective;
92
93%determine sample [b1, b2, b3, b4, b5, log_c1, log_c2] that minimizes the negative
94%log-probability
95minimum = struct2array(best_b_sample);
96
97%path to negative log-probability variable
98path = 'driver.acquisition_function.main_objective.variable';
99neg_log_probs = study.historic_parameter_values([path, '.observed_value']);
100[min_val, idx] = min(neg_log_probs);
101
102logs_c1 = study.historic_parameter_values([path, '.error_model_parameters.log_c1']);
103logs_c2 = study.historic_parameter_values([path, '.error_model_parameters.log_c2']);
104
105minimum = [minimum, logs_c1(idx), logs_c2(idx)];
106
107% Before running a Markov-chain Monte-Carlo (MCMC) sampling we converge the surrogate
108% models by sampling around the minimum. To make the study more explorative, the
109% scaling parameter is increased and the effective degrees of freedom is set to one.
110study.configure( ...
111 'scaling', 10.0, ...
112 'effective_DOF', 1.0, ...
113 'min_uncertainty', abs(min_neg_log_prob)*1e-8, ...
114 'max_iter', 120 ...
115);
116while(not(study.is_done))
117 sug = study.get_suggestion();
118 obs = evaluate(study, sug.sample);
119 study.add_observation(obs, sug.id);
120end
121
122% Run the MCMC sampling with 32 walkers
123num_walkers = 32; max_iter = 10000;
124mcmc_result = study.driver.run_mcmc( ...
125 'rel_error', 0.01, ...
126 'num_walkers', num_walkers, ...
127 'max_iter', max_iter ...
128);
129% This Matlab code does not contain a detailed analysis of the MCMC sampling by corner plots.
130% Please, see the corresponding Python tutorial for a code example.
Markov-Chain Monte-Carlo (MCMC) sampling of the probability density of the model parameters \(b_1,\dots,b_5\) and the log value of the error model parameters \(c_1,\dots,c_2\) based on the analytic model function.
Markov-Chain Monte-Carlo (MCMC) sampling of the probability density of the model parameters \(b_1,\dots,b_5\) and the log value of the error model parameters \(c_1,\dots,c_2\) based on the trained surrogate of the study. A comparison between the analytic and the surrogate model function shows a good quantitative agreement.