Solution of least-square problem using Bayesian optimization
- Driver:
Download script: bayesian_least_squares.m
The target of the study is to showcase the solution of a non-linear least-squares problem from the NIST statistical reference datasets. As an example, the MGH17 problem is considered which consists of fitting a vectorial model \(\mathbf{f}(\mathbf{b}) \in \mathbb{R}^{33}\) with
to a target vector with 33 entries. The certified best-fit values are
1client = jcmoptimizer.Client();
2
3% Definition of the search domain
4design_space = { ...
5 struct('name', 'b1', 'type', 'continuous', 'domain', [0,10]), ...
6 struct('name', 'b2', 'type', 'continuous', 'domain', [0.1,4]), ...
7 struct('name', 'b3', 'type', 'continuous', 'domain', [-4,-0.1]), ...
8 struct('name', 'b4', 'type', 'continuous', 'domain', [0.05,1]), ...
9 struct('name', 'b5', 'type', 'continuous', 'domain', [0.05,1]) ...
10};
11constraints = { ...
12 struct('name', 'test', 'expression', 'b2 + b3 <= 1.0') ...
13};
14
15 % Creation of the study object with study_id 'bayesian_least_squares'
16study = client.create_study( ...
17 'design_space', design_space, ...
18 'constraints', constraints,...
19 'driver','BayesianLeastSquares',...
20 'study_name','Solution of least-square problem using Bayesian optimization',...
21 'study_id', 'bayesian_least_squares');
22%The vectorial model function of the MGH17 problem
23function val = model(x)
24 s = 0:32;
25 val = x(1) + x(2)*exp(-s.*x(4)) + x(3)*exp(-s.*x(5));
26end
27
28%Target vector of the MGH17
29target=[8.44E-01, 9.08E-01, 9.32E-01, 9.36E-01, 9.25E-01, ...
30 9.08E-01, 8.81E-01, 8.50E-01, 8.18E-01, 7.84E-01, ...
31 7.51E-01, 7.18E-01, 6.85E-01, 6.58E-01, 6.28E-01, ...
32 6.03E-01, 5.80E-01, 5.58E-01, 5.38E-01, 5.22E-01, ...
33 5.06E-01, 4.90E-01, 4.78E-01, 4.67E-01, 4.57E-01, ...
34 4.48E-01, 4.38E-01, 4.31E-01, 4.24E-01, 4.20E-01, ...
35 4.14E-01, 4.11E-01, 4.06E-01];
36
37study.configure( ...
38 'target_vector', target, ...
39 'max_iter', 120 ...
40);
41% Evaluation of the black-box function for specified design parameters
42function observation = evaluate(study, sample)
43
44 observation = study.new_observation();
45 %array of design values
46 x = [sample.b1, sample.b2, sample.b3, sample.b4, sample.b5];
47 observation.add(model(x));
48
49end
50
51% Run the minimization
52study.set_evaluator(@evaluate);
53study.run();
54
55best_sample = study.driver.best_sample;
56min_chisq = study.driver.min_objective;
57uncertainties = study.driver.uncertainties;
58fprintf("Reconstructed parameters with chi-squared value %e\n", min_chisq);
59fns = fieldnames(best_sample);
60for i = 1:length(fns)
61 fprintf(" %s = %f +/- %f\n", fns{i}, ...
62 best_sample.(fns{i}), uncertainties.(fns{i}));
63end
64
65% Before running a Markov-chain Monte-Carlo (MCMC) sampling we converge the surrogate
66% models by sampling around the minimum. To make the study more explorative, the
67% scaling parameter is increased and the effective degrees of freedom is set to one.
68study.configure( ...
69 'scaling', 10.0, ...
70 'effective_DOF', 1.0, ...
71 'min_uncertainty', min_chisq*1e-8, ...
72 'max_iter', 150, ...
73 'min_val', 0.0 ...
74);
75while(not(study.is_done))
76 sug = study.get_suggestion();
77 obs = evaluate(study, sug.sample);
78 study.add_observation(obs, sug.id);
79end
80
81% Run the MCMC sampling with 32 walkers
82num_walkers = 32; max_iter = 10000;
83mcmc_result = study.driver.run_mcmc( ...
84 'rel_error', 0.01, ...
85 'num_walkers', num_walkers, ...
86 'max_iter', max_iter ...
87);
88% This Matlab code does not contain a detailed analysis of the MCMC sampling by corner plots.
89% Please, see the corresponding Python tutorial for a code example.
90
91
92client.shutdown_server();
Markov-Chain Monte-Carlo (MCMC) sampling of the probability density of the parameters \(b_1,\dots,b_5\) based on the analytic model function.
Markov-Chain Monte-Carlo (MCMC) sampling of the probability density of the parameters \(b_1,\dots,b_5\) based on the trained surrogate of the study. A comparison between the analytic and the surrogate model function shows a good quantitative agreement.