.. _MultiMinimizationObjective: Multi-objective minimization ---------------------------- The objective is to learn the *Pareto front* of multiple minimization objectives. A vector of objective values :math:`\mathbf{y}\in \mathbb{R}^q` lies at the Pareto front if the improvement (decrease) if it is not dominated by any other possible vector of outcomes. A vector :math:`\mathbf{y}_1` is dominated by a vector :math:`\mathbf{y}_2` if all entries of :math:`\mathbf{y}_2` are smaller or equal the entries of :math:`\mathbf{y}_1`. The strategy to find samples close or at the Pareto front is to maximize the hypervolume enclosed by all non-dominated sampling points and the upper reference point :math:`\mathbf{y}_{\rm upper}`. The progress is defined in terms of the decreasing hypervolume between the lower reference point :math:`\mathbf{y}_{\rm lower}` and the non-dominated sampling points. .. _ActiveLearning.MultiMinimizer.name: name (str) """""""""" The name of the objective. Default: ``'objective'`` .. _ActiveLearning.MultiMinimizer.variables: variables (list[str]) """"""""""""""""""""" A list with the names of the variables that specify the objective. Default: A list with the first two variables in the list of all variables. .. _ActiveLearning.MultiMinimizer.lower_reference: lower_reference (list[float]) """"""""""""""""""""""""""""" Specifies the reference point :math:`\mathbf{y}_{\rm lower}` of the hypervolume. The entries should be at maximum slightly smaller than the minimal possible value of each objective. Default: This value has no default and must be provided .. _ActiveLearning.MultiMinimizer.upper_reference: upper_reference (list[float]) """"""""""""""""""""""""""""" Specifies the reference point :math:`\mathbf{y}_{\rm upper}` of the hypervolume. The entries should be at least slightly larger than the maximal possible value of each objective. Default: This value has no default and must be provided .. _ActiveLearning.MultiMinimizer.partitioning_tolerance: partitioning_tolerance (float) """""""""""""""""""""""""""""" The parameter can be increased to obtain an approximate partitioning faster. The tolerance is a fraction of the total hypervolume. When a hypercell's volume divided by the total hypervolume is less than the tolerance, it is disregarded. Default: ``0.0`` .. _ActiveLearning.MultiMinimizer.localize: localize (bool) """"""""""""""" If true, a local search is performed, i.e. samples are not drawn in regions with large uncertainty. Default: ``False`` .. _ActiveLearning.MultiMinimizer.min_acq_val: min_acq_val (float) """"""""""""""""""" The study is stopped if the maximum acquisition value (usually expected hypervolume improvement) of the last 5 iterations is below ``min_acq_val``. Default: ``1e-16``