.. _ChiSquaredVariable: Chi-squared variable -------------------- This variable describes the chi-squared deviation .. math:: \chi^2 = \sum_{i=1}^K \frac{\left(t_i - y_i\right)^2}{\eta_i^2}. between `K` outputs :math:`y_i` of a surrogate and `K` targets :math:`t_i` scaled by the target uncertainties :math:`\eta_i`. If the target uncertainties are not independent but correlated, it is also possible to specify the covariance matrix :math:`G` of the targets. In this case, the chi-squared deviation is given as .. math:: \chi^2 = \sum_{i,j=1}^K (t_i - y_i) G_{i j}^{-1} (t_j - y_j). If the predictions of the surrogate, :math:`y_i`, follow a Gaussian distribution, the variable follows a generalized chi-squared distribution. .. _ActiveLearning.ChiSquaredValue.name: name (str) """""""""" The name of the variable under which it can be addressed by other variables or objectives. The name must be distinct from any surrogate name. Default: ``'v'`` .. _ActiveLearning.ChiSquaredValue.input: input (str) """"""""""" The name of a surrogate model or a multi-output variable. Default: This value has no default and must be provided .. _ActiveLearning.ChiSquaredValue.target_vector: target_vector (list[float]) """"""""""""""""""""""""""" Vector of target values :math:`t_i`. Default: Vector of zeros. .. _ActiveLearning.ChiSquaredValue.uncertainty_vector: uncertainty_vector (list[float]) """""""""""""""""""""""""""""""" Vector of target uncertainties :math:`\eta_i` such that :math:`\chi^2 = \sum_{i=1}^K \frac{(t_i - y_i)^2}{\eta_i^2}`. Default: Vector of ones. .. _ActiveLearning.ChiSquaredValue.covariance_matrix: covariance_matrix (list[list[float]]) """"""""""""""""""""""""""""""""""""" Covariance matrix :math:`G`. Default: Diagonal identity matrix. .. _ActiveLearning.ChiSquaredValue.approximate: approximate (bool) """""""""""""""""" If true, the generalized chi-squared variable with different uncertainties of the predictions of each channel `K` is approximated by a chi-squared variable with averaged uncertainties. This allows to analytically compute probability densities and any acquisition function that is directly based on the variable. Default: ``True`` .. _ActiveLearning.ChiSquaredValue.force_MC_integration: force_MC_integration (bool) """"""""""""""""""""""""""" If true, the posterior of the variable is based on Monte-Carlo samples. In this case one can avoid to determine a Gaussian distribution of function values, which might be numerically unstable, if the correlation between the inputs is strong. Default: ``False`` .. _ActiveLearning.ChiSquaredValue.effective_DOF: effective_DOF (float) """"""""""""""""""""" Number of effective degrees of freedom (DOF) used for stochastic variable of the chi-squared distribution. This number roughly indicates how many output channels of the forward model are statistically independent. Default: If not specified, the value us determined automatically. .. note:: If ``approximate`` is false, this parameter has no effect. .. _ActiveLearning.ChiSquaredValue.effective_DOF_bounds: effective_DOF_bounds (list[float]) """""""""""""""""""""""""""""""""" The number of effective degrees of freedom (DOF) is determined by a maximum likelihood estimate within the given lower and upper bounds. Default: ``[10.0,50.0]`` .. note:: If ``approximate`` is false or the ``effective_DOF`` is set manually, this parameter has no effect.